14 research outputs found

    Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products

    Get PDF
    A stronger commitment towards Green Building and circular economy, in response to environmental concerns and economic trends, is evident in modern industrial cement and concrete production processes. The critical demand for an overall reduction in the environmental impact of the construction sector can be met through the consumption of high-grade supplementary raw materials. Advanced solutions are under development in current research activities that will be capable of up-cycling larger quantities of valuable raw materials from the fine fractions of End-of-Life (EoL) concrete waste. New technology, in particular the Heating-Air classification System (HAS), simultaneously applies a combination of heating and separation processes within a fluidized bed-like chamber under controlled temperatures (±600 °C) and treatment times (25–40 s). In that process, moisture and contaminants are removed from the EoL fine concrete aggregates (0–4 mm), yielding improved fine fractions, and ultrafine recycled concrete particles (<0.125 mm), consisting mainly of hydrated cement, thereby adding value to finer EoL concrete fractions. In this study, two types of ultrafine recycled concrete (either siliceous or limestone EoL concrete waste) are treated in a pilot HAS technology for their conversion into Supplementary Cementitious Material (SCM). The physico-chemical effect of the ultrafine recycled concrete particles and their potential use as SCM in new cement-based products is assessed by employing substitutions of up to 10% of the conventional binder. The environmental viability of their use as SCM is then evaluated in a Life Cycle Assessment (LCA). The results demonstrated accelerated hydration kinetics of the mortars that incorporated these SCMs at early ages and higher mechanical strengths at all curing ages. Optimal substitutions were established at 5%. The results suggested that the overall environmental impact could be reduced by up to 5% when employing the ultrafine recycled concrete particles as SCM in circular cement-based products, reducing greenhouse gas emissions by as much as 41 kg CO2 eq./ton of cement (i.e. 80 million tons CO2 eq./year). Finally, the environmental impacts were reduced even further by running the HAS on biofuel rather than fossil fuel.The authors of the present paper, prepared in the framework ofthe Project VEEP "Cost-Effective Recycling of C&DW in High AddedValue Energy Efficient Prefabricated Concrete Components forMassive Retrofitting of our Built Environment", wish to acknowl-edge the European Commission for its support. This project hasreceived funding from the European Union’s Horizon 2020 researchand innovation programme under grant agreement No 723582.This paper reflects only the author’s view and the European Com-mission is not responsible for any use that may be made of theinformation it contains.The authors are also grateful to the Spanish Ministry of Science,Innovation and Universities (MICIU) and the European RegionalDevelopment Fund (FEDER) for funding this line of research(RTI2018-097074-B-C21)

    Progress in the influence of recycled construction and demolition mineral-based blends on the physical–mechanical behaviour of ternary cementitious matrices

    Get PDF
    [Abstract:] The serious technical and environmental problems associated with the management of construction and demolition wastes (CDW) have led to a worldwide growing interest in the recycling of that waste stream as secondary raw material for sustainable building applications. This research work investigates the physical and mechanical behaviour of mortars made with ternary cements containing 7% of a binary recycled CDW mixture comprising the fine fraction (<5 mm) of recycled concrete waste (both siliceous and calcareous nature) in combination with recycled laminar glass in three different proportions (1/1, 1/2, and 2/1, respectively). To this end, the chemical composition and fineness of the anhydrous ternary cements were analysed, as well as their behaviour in paste and mortar matrices, in both fresh and hardened states, verifying the requirements established by the applicable standards. The results attest to the viability of using these ternary cements, as their performance is comparable to that of an ordinary Portland cement (OPC), without evidencing any significant dependence on the glass content. The compressive strength values decrease by 7–8% with respect to that of the OPC mortar, revealing the prevalence of the filler effect over the pozzolanic reaction. The ternary cements analysed in this study met the chemical, physical and mechanical requirements for the elaboration of future eco-efficient cements.Ministerio de Ciencia, Innovación y Universidades; RTI2018-097074-B-C21-2

    Diet and food strategies in a southern al-Andalusian urban environment during Caliphal period, ecija, Sevilla

    Get PDF
    The Iberian medieval period is unique in European history due to the widespread socio-cultural changes that took place after the arrival of Arabs, Berbers and Islam in 711 AD. Recently, isotopic research has been insightful on dietary shifts, status, resource availability and the impact of environment. However, there is no published isotopic research exploring these factors in southern Iberian populations, and as the history of this area differs to the northern regions, this leaves a significant lacuna in our knowledge. This research fills this gap via isotopic analysis of human (n = 66) and faunal (n = 13) samples from the 9th to the 13th century Écija, a town renowned for high temperatures and salinity. Stable carbon (δ13C) and nitrogen (δ15N) isotopes were assessed from rib collagen, while carbon (δ13C) values were derived from enamel apatite. Human diet is consistent with C3 plant consumption with a very minor contribution of C4 plants, an interesting feature considering the suitability of Écija to C4 cereal production. δ15N values vary among adults, which may suggest variable animal protein consumption or isotopic variation within animal species due to differences in foddering. Consideration of δ13C collagen and apatite values together may indicate sugarcane consumption, while moderate δ15N values do not suggest a strong aridity or salinity effect. Comparison with other Iberian groups shows similarities relating to time and location rather than by religion, although more multi-isotopic studies combined with zooarchaeology and botany may reveal subtle differences unobservable in carbon and nitrogen collagen studies alone.OLC is funded by Plan Galego I2C mod.B (ED481D 2017/014). The research was partially funded by the projects “Galician Paleodiet” and by Consiliencia network (ED 431D2017/08) Xunta de GaliciaS

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Obtaining a pozzolanic addition from the controlled calcination of paper mill sludge. Performance in cement matrices

    Get PDF
    12 páginas, 6 figuras, 7 tablas.[ES] Los lodos de destintado del papel están constituidos,mineralógicamente, por calcita, caolinita, talco y otros filosilicatos (ilita, clorita). Cuando al lodo se le somete aun tratamiento térmico controlado, la caolinita puede transformarse en metacaolín, dando origen a un producto de alta reactividad puzolánica. El objeto de este trabajo es analizar diferentes aspectos científicos relativos al proceso de obtención de una adiciónpuzolánica a partir de la activación térmica controlada de lodos de destintado del papel, así como evaluar el comportamiento de la nueva adición cuando se incorpora en una matriz de cemento. Los resultados obtenidos ponen de manifiesto la recomendación de utilizar 700 ºC durante 2 horas de permanencia en el horno, como condiciones más óptimas para activar los residuos de lodos de papel en el intervalo 700-800 ºC. Del estudio comparativo del cemento elaborado con la nueva adición con respecto a un cemento comercial (CEM I-42,5R), se puede destacar la viabilidad científica y técnica de este residuo como material cementante secundario.[EN] Mineralogically, the paper mill sludge consists essentially of calcite, kaolinite, talc and other philosilicates (illite, chlorite). When such sludge is subjected to controlled thermal treatment, its kaolinite component may be transformed into metakaolin, yielding a product with high pozzolanic reactivity. This study was designed to analyze a number of scientific questions around the production of pozzolanic additions via controlled thermal activation of paper mill sludge and to evaluate the performance of such additions when included in a cement matrix. The findings show that paper mill waste activation is optimal when the sludge is calcined for 2 hours at 700 ºC in the 700-800 ºC interval. A comparative study between the cement made with the new addition and a commercial cement (CEM I-42.5R) used as a reference led to highlight the scientific and technical viability of this waste as a cementing secondary material.Los autores del presente trabajo quieren agradecer al Ministerio de Educación y Ciencia del Gobierno Español por los fondos subvencionados en el presente proyecto de investigación (MAT2003-06479-C03).Peer reviewe

    Mechanical expectations of a high performance concrete based on a polymer binder and reinforced with non-metallic rebars

    No full text
    [EN] A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. Given the closed porosity obtained in polymer concrete, its microstructure continuity and organic nature of the binder, this material is highly protected against atmospheric conditions, corrosion and chemical attacks. The present research work concludes how the structural compatibility, between polymer concrete and non-metallic bars, is obtained in the monotonic bonding tests by providing higher adherence values than traditional reinforced concrete.Peer reviewe

    Freeze–thaw resistance of blended cements containing calcined paper sludge

    No full text
    [EN] This work deals with the frost resistance of blended cements containing calcined paper sludge (source for metakaolin) as partial Portland cement replacements. Freeze–thaw tests were performed on blended cement mortars containing 0%, 10% and 20% waste paper sludge calcined at 650 °C for 2 h. Cement mortar specimens were exposed to freezing and thawing cycles until the relative dynamic modulus of elasticity fell below 60%. The performance of the cement mortars was assessed from measurements of weight, ultrasonic pulse velocity, compressive strength, mercury intrusion porosimetry and SEM. Failure of the control cement mortar occurred before 40 freeze/thaw cycles, while cement mortar containing 20% calcined paper sludge failed after 100 cycles. After 28 and 62 freezing and thawing cycles, cement blended with 10% and 20% calcined paper sludge exhibited a smaller reduction in compressive strength than the control cement.Peer reviewe

    Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements

    No full text
    The construction industry and more particularly cement manufacture industry are European Green Deal strategic priorities for the circularity of Europe¿s construction and demolition waste (CDW) stream with a view to reducing CO2 emissions. The industry is engaged in a number of strategies to that end, one of which is to manufacture new low-carbon, lower clinker/cement ratio cements by replacing portland clinker with inorganic fractions of CDW featuring hydraulic or pozzolanic properties. Against the backdrop of that global challenge, the present study explores the cementitious potential of the limestone and siliceous concrete fines and shatterproof building glass found in CDW as supplementary cementitious materials (SCMs) in new blended cements. The research was conducted in two stages: generation of new laboratory-scale knowledge; and industrial validation of the viability of using the highest volume waste streams. The laboratory-scale findings revealed that the presence of the filler effect and pozzolanicity in micronised inorganic fractions of concrete and building glass waste induces the neoformation of hydrated phases and C-S-H gel. Those two developments improve the short- and long-term physical and mechanical properties of the new blended cements at optimal replacement ratios of 5¿7%. The order of material effectiveness in shortening setting times, increasing the heat of hydration and maintaining mechanical strength was observed to be as follows: limestone concrete > siliceous concrete > glass waste. Laboratory analysis was followed by a pilot study consisting in the manufacture of 184 t of blended cement in which 5% of the clinker was replaced by recycled concrete. Higher product performance than the commercial reference cement confirmed the industrial, technical, economic and environmental viability of the new product, estimated to hold potential for CO2 emissions abatement on the order of 41 kg CO2 eq./t of cement, which could translate into 80 Mt CO2 eq./year worldwide.Funding for this research was received from the following organisations: Spanish Ministry of Science, Innovation and Universities (MICIU) (RTI2018-097074-B-C21/22); Spanish National Research Agency (AEI); European Regional Development Fund (EU-ERDF); Asociación Española de Reciclaje de Residuos de Construcción y Demolición (RCDA), Sika (Madrid, Spain); Instituto Español del Cemento y sus Aplicaciones (IECA). The paper was prepared as part of VEEP Project ‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Components for Massive Retrofitting of our Built Environment’, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723582; as well as part of CINDERELA Project ‘New Circular Economy Business Model for More Sustainable Urban Construction’. Funding was also provided by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 776751. The findings were also partially funded by the Regional Basque Government and the European Regional Development Fund 2014-2020 (ERDF) under the HAZITEK (ZL-2019/00586) programme for support for private sector R&D

    Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements

    Get PDF
    The construction industry and more particularly cement manufacture industry are European Green Deal strategic priorities for the circularity of Europe¿s construction and demolition waste (CDW) stream with a view to reducing CO2 emissions. The industry is engaged in a number of strategies to that end, one of which is to manufacture new low-carbon, lower clinker/cement ratio cements by replacing portland clinker with inorganic fractions of CDW featuring hydraulic or pozzolanic properties. Against the backdrop of that global challenge, the present study explores the cementitious potential of the limestone and siliceous concrete fines and shatterproof building glass found in CDW as supplementary cementitious materials (SCMs) in new blended cements. The research was conducted in two stages: generation of new laboratory-scale knowledge; and industrial validation of the viability of using the highest volume waste streams. The laboratory-scale findings revealed that the presence of the filler effect and pozzolanicity in micronised inorganic fractions of concrete and building glass waste induces the neoformation of hydrated phases and C-S-H gel. Those two developments improve the short- and long-term physical and mechanical properties of the new blended cements at optimal replacement ratios of 5¿7%. The order of material effectiveness in shortening setting times, increasing the heat of hydration and maintaining mechanical strength was observed to be as follows: limestone concrete > siliceous concrete > glass waste. Laboratory analysis was followed by a pilot study consisting in the manufacture of 184 t of blended cement in which 5% of the clinker was replaced by recycled concrete. Higher product performance than the commercial reference cement confirmed the industrial, technical, economic and environmental viability of the new product, estimated to hold potential for CO2 emissions abatement on the order of 41 kg CO2 eq./t of cement, which could translate into 80 Mt CO2 eq./year worldwide.Funding for this research was received from the following organisations: Spanish Ministry of Science, Innovation and Universities (MICIU) (RTI2018-097074-B-C21/22); Spanish National Research Agency (AEI); European Regional Development Fund (EU-ERDF); Asociación Española de Reciclaje de Residuos de Construcción y Demolición (RCDA), Sika (Madrid, Spain); Instituto Español del Cemento y sus Aplicaciones (IECA). The paper was prepared as part of VEEP Project ‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Components for Massive Retrofitting of our Built Environment’, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 723582; as well as part of CINDERELA Project ‘New Circular Economy Business Model for More Sustainable Urban Construction’. Funding was also provided by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 776751. The findings were also partially funded by the Regional Basque Government and the European Regional Development Fund 2014-2020 (ERDF) under the HAZITEK (ZL-2019/00586) programme for support for private sector R&D

    Nuevos cementos eco-eficientes elaborados con la fracción fina de hormigón reciclado para futuras aplicaciones ingenieriles

    No full text
    Los residuos de la construcción son un gran problema medioambiental. Europa ha priorizado su reciclaje para nuevas construcciones ingenieriles. Sin embargo, la fracción fina de los residuos de hormigón, no presenta aplicaciones y son almacenados en las plantas de tratamiento. Este trabajo investiga el comportamiento de pastas de cemento elaboradas con un 7% de la fracción fina de hormigón de diferente naturaleza. Los resultados muestran que estos residuos presentan poca actividad puzolánica y sus propiedades físicas y mecánicas son muy similares a la pasta de cemento. A pesar de ello, los cementos mezcla cumplirían con la normativa para cementos comunes. Esto abre una vía para reutilizar estos residuos en nuevas tecnologías de construcción como puede ser impresión 3D
    corecore